2D-INADEQUATE 13C nuclear magnetic resonance assignment of regioirregular poly(1-butene)

Tetsuo Asakura and Nobuhiko Nakayama

Department of Polymer Engineering, Tokyo University of Agriculture and Technology, Nakamachi 2-Chome, Koganei, Tokyo 184. Japan (Received 12 April 1991)

The 13 C nuclear magnetic resonance (n.m.r.) spectrum of regioirregular poly (1-butene) with a large number of chemical inversion units in the chain was observed. The assignments were performed by ^{13}C n.m.r. Lindeman-Adams empirical rules, the insensitive nuclei enhancement by polarization transfer (INEPT) and two-dimensional incredible natural abundance double quantum transfer experiment (2D-INADEQUATE) ¹³C n.m.r. techniques. 2D-INADEQUATE was especially useful to assign each peak to carbon atoms located in several kinds of sequences in the chain.

(Keywords: a3C n.m.r.; 2D-INADEQUATE; regioirregular poly(1-butene))

Introduction

The recently developed two-dimensional incredible natural abundance double quantum transfer experiment $(2D\text{-}\text{INADEQUATE})$ ¹³C nuclear magnetic resonance $(n.m.r.)$ technique^{1,2} has been successfully used to assign the 13 C n.m.r. spectra of ethylene-propylene (E-P) copolymers^{3,4}, stereoirregular polypropylene $(PP)^5$ and regioirregular pp6.

In this paper, we have used the 2D-INADEQUATE method in order to assign the 13 C n.m.r. spectrum of regioirregular poly(1-butene) (PB). Although there are many reports on the 13 C n.m.r. assignment of regioirregular PP^{6-15} , the assignment of regioirregular PB is limited¹⁶. Because of the coexistence of several kinds of sequences containing inverted monomer units and the splitting due to the tacticity^{17,18}, the spectra are extremely complex. This paper contains the first detailed assignment of regioirregular PB.

Experimental

The polymer solution was prepared at a concentration of 21 $w/v\%$ in an o-dichlorobenzene-deuteriobenzene $(9:1 \text{ v/v})$ mixture. The 2D-INADEQUATE ¹³C n.m.r. spectrum was measured at 100°C using a Jeol GX-270 n.m.r, spectrometer operating at 67.8 MHz. The standard pulse sequence, 90° -1/4J-180[°]-1/4J-90[°]-t₁-135[°]-acquisition(t_2), was used, where J is a constant of $^{13}C-^{13}C$ direct coupling. The delay time, *1/4J,* was set to be 7.11 ms corresponding to the ${}^{13}C-{}^{13}C$ coupling constant of 35.2 Hz. The data matrix size of the time domain was $4096(f_2) \times 128(f_1)$, and that of the frequency domain was expanded to $8192(F_2) \times 256(F_1)$. Hexamethyldisiloxane was used as the internal reference (2.03 ppm downfield from the peak of tetramethylsilane).

Results and discussion

Figure 1 shows the 13 C n.m.r. spectra of a regioirregular PB sample with a large number of chemical inversion units. The 13 C chemical shifts calculated

0032-3861/92/030650-05 © 1992 Butterworth-Heinemann Ltd.

650 POLYMER, 1992, Volume 33, Number 3

according to 13C n.m.r. Lindeman-Adams empirical rules¹⁹ for the prediction of ¹³C chemical shifts of alkanes are also shown as stick spectra by assuming the presence of several kinds of sequences containing the chemical inversion units⁷. This sample is atactic judging from the relative peak intensities of the carbons located at the regular head-to-tail $(H-T)$ sequence of the chain^{17,18}. From a comparison of the calculated and observed chemical shifts, it is clear that there are some sequences other than H-T and isolated H-H or T-T units. In order to separate the CH and $CH₂$ peaks in the spectrum, the insensitive nuclei enhancement by polarization transfer (INEPT) spectrum was observed¹³. The expanded spectra in the 34-45 ppm region are shown in *Figure 2.* Thus, the two peaks at 36 and 36.5 ppm, and the peaks at $24-34$ ppm are assigned to the CH₂ carbons. The peak at 43 ppm, two peaks at \sim 38 ppm and the peak at 35 ppm are assigned to the CH carbons. The peaks at 39.5-40.5 ppm are a mixture of the CH and CH₂ carbons which are separated by the INEPT observation. The peaks at $11-13$ ppm are assigned to the $CH₃$ carbons. In order to assign these peaks to carbons located in several kinds of sequences, the 2D-INADEQUATE spectrum was observed.

Figure 3 shows the 2D-INADEQUATE spectra of regioirregular PB. The region from 22 to 45 ppm was expanded and the ${}^{13}C-{}^{13}\overline{C}$ connectivities of the carbons located at the sequences which contain the isolated H-H and T-T units are shown. Unassigned peaks still remain, indicating the presence of other sequences in the chain. Thus, the $^{13}C^{-13}C$ connectivities of the carbons located at three kinds of sequences other than the sequences of the isolated H-H and T-T units are also examined.

Figure 4 shows the $^{13}C-^{13}C$ connectivities of the sequence involving a single inverted unit in the H-T sequences, termed as 1-r. Thus, the peaks at 28.5, 33.2 and 43.2ppm are now assigned. Similarly, other sequences, 2-r and 2U-r are taken into account and the 13C - 13C connectivities are also made in the 2D-INADEQUATE spectrum (data not shown). Here, the sequence where inversion occurs followed by a second inversion is termed 2-r and the sequence where two

S _or~ TMS *....... . o'.---"* $\frac{1}{2}$ $\frac{1}{2}$ *0 u~* 15 *r, -- 0 Oq i E* \mathbf{r} *b'l q D* $\begin{bmatrix} 1 & -2 \\ 0 & -1 \end{bmatrix}$ $\begin{bmatrix} 1 & -2 \\ -1 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$ ÷÷ e sido 0000
2000 *< I* $\frac{1}{\sigma \omega}$ *-- 0 03* $\overline{111}$ *.~_ .J e~ Lq Cq* $\tilde{\mathbf{C}}$ *i!i _ i.!.i/_ "d -- 0 gJ ea,.~ ,-~f'4 ,--t 0 ,-4 U~ -1 I I __I __I --I ~I* 20^{-r} *e~ I I I I I I*

t-

s ~" o= • ~ ~ o CH,

~ + .
Эн, *~-=_=£ =£ =*

Figure 2 13C n.m.r, spectra of regioirregular poly(1-butene). The region 34–45 ppm was expanded: (A) ¹H completely decoupled; **(B)** INEPT $(\Delta = 2/4J)$, methine only; **(C)** difference $(A-B)$, **methylene only; (V) reference peak**

N.m.r. study of poly (1-butene) ." T. Asakura and N. Nakayama

Table 1^{13} C n.m.r. chemical shift assignment for regioirregular poly (1-butene)

Figure 4 2D-INADEQUATE ¹³C n.m.r. spectrum (22-45 ppm) of regioirregular poly(1 butene). The $^{13}C-^{13}C$ connectivities of the sequence 1-r where a single chemical inversion occurs in the H-T sequences are shown

Figure 5 13 C n.m.r. spectrum of regioirregular poly (1-butene). The nomenclature proposed by Carman and Wilkes²⁰ is used for the designation of the carbon types

successive inverted units occurs is 2U-r:

Thus, all of the peaks are assigned to each carbon in the sequences considered here. This is similar to the case of the ${}^{13}C$ n.m.r. spectrum of regioirregular PP with a large amount of chemical inversion⁶.

The final assignments including the $CH₃$ carbons are summarized in *Figure 5* and *Table 1*, where the nomenclature proposed by Carman and Wilkes²⁰ is used for the designation of carbon types. The side-chain secondary and primary carbons are designated by s-S and P, respectively, and the main chain secondary and tertiary carbons by m-S and T, respectively. The Greek subscripts indicate position relative to the nearest and/or the next nearest neighbour tertiary carbons in both directions along the polymer chain.

Acknowledgement

We thank Dr Kazuo Sato at Idemitsu Petroleum Chemical Co. Ltd for providing the regioirregular poly(1-butene) sample.

References

- Bax, A., Freeman, R. and Kempsell, S. P. J. Am. Chem. Soc. 1 1980, 102, 4849
- \overline{c} Bax, A., Freeman, R., Frenkiel, T. A. and Leuitt, M. H. J. Magn. Reson. 1981, 43, 478
- 3 Hikichi, K., Hiraoki, T., Ikura, M., Higuchi, K., Eguchi, K. and Ohuchi, M. Polym. J. 1987, 19, 1317
- Hayashi, T., Inoue, Y., Chujo, R. and Asakura, T. Polym. J. $\overline{4}$ 1989. 20. 895
- 5 Ando, I., Yamanobe, T. and Asakura, T. Prog. NMR Spectr. 1990, 22, 349
- 6 Asakura, T., Nakayama, N., Demura, M. and Asano, A. Macromolecules submitted for publication
- Asakura, T., Ando, I., Nishioka, A., Doi, Y. and Keii, T. Makromol. Chem. 1977, 178, 791 $\overline{7}$
- \mathbf{R} Doi, Y. Macromolecules 1979, 12, 248
- Doi, Y. Makromol. Chem. 1979, 180, 2447 9
- 10 Asakura, T. and Doi, Y. Macromolecules 1980, 13, 454
- Cheng, H. N. Polym. Bull. 1985, 14, 347 11
- Cheng, H. N. and Bennett, M. A. Makromol. Chem. 1987, 188, 12 2665
- 13 Asakura, T., Nishiyama, Y. and Doi, Y. Macromolecules 1987, 20, 616
- 14 Grassi, A., Zambelli, A., Resconi, L., Albizzati, E. and Mazzocchi, R. Macromolecules 1988, 21, 617
- Cheng, H. N. and Ewen, J. A. Makromol. Chem. 1989, 190, 1931 15
- 16 Doi, Y. and Asakura, T. Macromolecules 1981, 14, 69
- 17 Asakura, T., Omaki, K., Zhu, S.-N. and Chujo, R. Polym. J. 1984, 16, 717
- 18 Asakura, T., Demura, M., Yamamoto, K. and Chujo, R. Polymer 1987, 28, 1037
- 19 Lindeman, L. P. and Adams, J. Q. Anal. Chem. 1971, 43, 1245
- 20 Carman, C. J. and Wilkes, C. D. Rubber Chem. Technol. 1971, 44, 781